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ABSTRACT

The goal of this rescarch was to develop analysis and optimal design procedures for

planar as well as spatial mchcanisms that are frequently used in space structures. A nonlincar

finite clement procedure which was.developed originally for planar mechanisms during the initial

stages of this research, has been modified considerably to handle complex mechanisms with sliding

masses and mechanisms operating at relatively high speeds. The analysis takes into account the

cffects of geometric and material nonlinearities, vibrational effects and coupling of

deformations. Numerical results have been reported for certain mechanism examples. The effects

of nonlinearitics have been found to be signiticant on the dynamic behavior of mechanisms.

Considerable progress has been made in developing a nonlinear finite element procedure for

three-dimensional mechanisms. Numerical results obtained for some example problems indicate the

validity of the current three-dimensional formulation. A new optimization algorithm has also

been developed based on the Gauss method to handle various types of nonlinear constraints with

the goal of reducing the number of analyses required to obtain an optimal design. Complcte

details of the nonlinear finite element procedures as well as the optimization technique are

available in published papers, copies of which are included here in the Appendix. Because of the
complex nature of the nonlinear analysis, which had to be repeated many times during the
optimization process, considerable amount of computer time was needed for this research. To help
overcome these computational difficulties, DoD and NSF provided funds through two separate grants
1o purchase a research computer and other associated equipment as well as access to a

supercomputer.
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SUMMARY
A nonlinear finite element analysis procedure which was developed for planar mechanisms
during the first phase of this research has undergone considerable modification to handle complex

mechanisms with sliding masses and mechanisms operating at relatively high speeds. A suitable

nonlinear finite element analysis procedure has also been developed for three-dimensional

mechanisms. In both cases, the analysis takes into account the effects of geometric and material
nonlinearities, vibrational effects, and coupling of deformations. Numerical results have been

reported for certain mechanism examples. These results indicate significant influences of the
geometric as well as the material nonlinearity effects on the dynamic behavior of mechanisms. In the
optimal design arca, a new algorithm has been developed for finding the minimum of a sum-of-squares
objective function subject to general nonlinear constraints. The solution of some selected examples
indicate good results in terms of the total number of objective function evaluations to obtain an

optimal design. Complete details of these investigations as well as those of the nonlinear finite

element analysis are included in the Appendix. To meet the extraordinary computational needs of this
project, a separate VAX 11/785 computer and peripheral equipment were made available through a DoD
research grant. The National Science Foundation also provided funds for some additional equipment as
well as computational time on a supercomputer. The current research will continue with the help of a
recently obtained National Science Foundation grant (Grant No. INT-8616036) which involves the
development of a joint clearance model for mechanical mechanisms and its inclusion in the vibrational

analysis of linkages undergoing large deformations due to high speeds and large loads.

RESEARCH OBJECTIVES
The objective of this rescarch was to develop a nonlinear finite clement dynamic analysis
procedure for planar as well as spatial mechanisms that are frequently used in space structures.
Included in the nonlinear analysis are the effects of curvature-displacement nonlincarity,
nonlinearity due to cxtension or streiching (both caused by large deformations), material

nonlinearity as well as combinations of these. In addition to the nonlinear analysis, an efficient

optimal design method was to be developed to handle objective functions composed of combinations of
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rigid body and deformation displacements involving geometric design variables as well as

cross-sectional sizes of the members of the mechanism subject to limitations on stresses and

deformations. Thus the proposed research involves the following.

a) develop a nonlinear finite element procedure for dynamic planar mechanisms.

b) develop an efficient optimization method involving a small number of analyscs for mechanism design
problems.

¢) extend the nonlinear analysis procedure developed for two-dimensional mechanisms to

three-dimensional mechanisms.

d) apply the optimization technique developed to simple mechanism problem.

¢) combine the nonlinear analysis procedure with the optimization technique to design complex

three-dimensional mechanisms, robots and mechanical manipulators.

SIGNIFICANT ACCOMPLISHMENTS

A nonlinear finite element analysis procedure has been developed for planar mechanisms to
handle geometric and material nonlinearitics (see the publications list and Appendix for details).
The results of several example mechanisms clearly indicate the need to include these types of
nonlinearities in the dynamic analysis. The difficulties in extending this approach to complex
planar mechanisms with sliding masses and mechanisms operating at relatively high speeds have been
overcome by using a modified finite-element formulation to handle such complex cases. Some example
problems using this new formulation have been considered in a paper entitled, "Vibrational Analysis
of Mechanisms with Geometric and Material Nonlinearities" (with E. Kear, M. Sathyamoorthy and K.D.
Willmert as authors) presented at the Joint AFOSR-SES Meeting held at the State University of New
York at Buffalo in August 1986. Similar results have also been presented in a very recent paper

cntitled, "Effect of Geometric and Material Nonlinearities on Vibration of Planar Mechanisms” by E.B.

Kear, M. Sathyamoorthy and K.D. Willment, presented at the ARO/AFOSR Meceting on Nonlincar Vibrations,
Stability and Dynamics of Structures and Mechanisms held at VPI & SU, Blacksburg, Virginia, March
1987. Considerable progress has also been made in developing a nonlinear finite clement procedure

for three-dimensional mechanisms. Some example problems have been solved and the results indicate
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the validity of the three-dimensional formulation. The general three-dimensional formulation is
given in a paper entitled, "Finite-Element Nonlinear Analysis of Three-Dimensional Mechanisms.” by
M. El-Sawy, K.D. Willmert and M. Sathyamoorthy included in the Appendix of this report.

In the optimization area, a very efficient optimality criterion technique called the Gauss
Constrained Method has been developed to solve optimal design problems with: objective functions which
are the sum of squared quantities with general nonlinear constraints. The technique has the
advantage of reducing the number of analyses required to obtain an optimal design, thereby
significantly reducing the computational time. This method is described in a paper entitled, "The
Development and Application of Gauss® Nonlinearly Constrained Optimization Method" (with D.R. Boston,
K.D. Willment and M. Sathyamoorthy as authors) published in the Jounal of Computer Methods in
Applied Mechanics and Engineering. In a paper entitled, "The Gauss Optimization Method for Problems
with General Nonlinear Constraints” by T.E. Potter, K.D. Willmert and M. Sathyamoorthy (presented at
the 22nd Annual Meeting of the Society of Engineering Science held at the Pennsylvania State
University, University Park, Pennsylvania, October 1985), a new algorithm has been developed for
finding the minimum of a sum-of-squares objective function subject to general nonlinear constraints.
The solution of examples indicate good results in terms of the total number of objective function
¢valuations required by the algorithm to obtain an optimal design. The optimization techniques
developed in this research as extensions of the Gauss method to handle various types of constraints,
reduce the number of analyses required to obtain an optimal design. The method is now being used to
solve additional example problems including various mechanisms.

Because of the very complex nonlincar analysis required, which must be repeated many times
during the optimization process. a considcrable amount of computer time was needed for this
research. To mect these needs, a proposal entitled "Laboratory for Graphical Analysis of Nonlincar
Deformations in Dynamic Structural-Mechanical Systems” was submitted to DoD under the DoD -
University Instrumentation Program to purchase a separate research computer for this project. This
resulted in a grant (No. AFOSR-85-0103) of $101,567. Although the original proposal called for the
purchase of a VAX 11/730, a very careful and thorough search for the best computer (with the

available funds) resulted in the purchase of a much larger and faster VAX 11/785. Digital Equipment




Corporation offered a sizable reduction in cost of its VAX 11/785 computer under the DEC Educational

Discount Program. Because of this reduction and because of additional cost sharing by Clarkson
University’s School of Engineering, it was possible to purchase the VAX 11/785 at no additional cost
to DoD. The computer equipment purchased through DoD-URIP Grant and other sources includes
I. VAX 11/785 COMPUTER HARDWARE
1. VAX 11/780 Packaged System Including: $102,750

(A) VAX 11/780 CPU

(B) 2-Mbytes ECC MOS (64-K chip) Memory

(C) H9652 UNIBUS Expansion Cabinet with BA 11-K and DD11-DK

(D) VAX/VYMS License and Warranty

2. TU80 9 Track Streaming Tape Drive with Cabinet $8.,800
3. RUASB1 456 Mbyte Fixed Disk $19,600
4. 2-Mbytes of Additional Memory $8,100
5. FP780 Floating Point Accelerator $8,960
6. Two DMF32-LP Communication Interfaces $5,250
7. 780 to 785 Upgrade Kit $80,000
8. 25 ft. RS 232 Sync Cable $95
9. Two 300/1200/2400 Baud Telephone Modems $1,060
10. Installation N/C
11. Insurance and Transportation $1.817

12. Miscellaneous - Installation of Power, Phone

Lines, Terminal Lincs, etc. $1,756
Total Computer Hardware Cost $238,188

[I. COMPUTER DISPLAY TERMINAL

1. Tektronix M4115B Computer Display Terminal $19.950
2. Option N1. Warranty-Plus $1.025
3. Option 2B: Additional 512 Kbytes RAM $4,600
4. Option 23: Additional Four Planes of Display Memory $6.000

P .
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2 5. Option 09: 4695 Color Copier Interface $500
i 6. Option 42: Single Flexible Disk $1.700
| 7. Display Stand $750
8. Software Package $1,000
u 9. 4695 Color Graphic Copier $1,595
- 10. Option 42: Warranty-Plus $430
« 11. 4926 10 Mbyte Hard Disk $4,200
. 12. Option N1: Warranty-Plus $210
z 13. Shipping 371
Total Display Terminal Cost $42,331
o III. SOFTWARE FOR VAX 11/785 COMPUTER
ﬁ-\{ 1. VMS Operating System N/C
) 2. FORTRAN License $5.170
. 3. DECNET Communication Software $2,950
g 4. IGL Graphics Software $2,677
.:-; 5. PSI Access Software $1,850
L . Total Software Cost $12,647
& IV. TOTAL HARDWARE & SOFTWARE COSTS $293,166
E-\-: The total value of the equipment and software is $293,166. Discounts and contributions from
. Digital Equipment Corporation, Tektronix, Clarkson University's College of Engineering and the
= Dcpartment of Mechanical and Industrial Engineering total $191,599. Thus, the total cost of the
hardware and software to DoD remained at $101,567 as originally proposed. It should be noted that
the capabilities of the VAX 11/785 system, including the Tektronix 4115 graphic terminal, are
. cnormous compared to the originally proposed VAX 11/730. The VAX 11/785 system is five times faster
than the VAX 117730, has 4 Mbytes of memory (compared to only 1 Mbyte of memory for VAX 11/730). 456
Mbyte of disk space (compared to 121 Mbyte of disk space) a total of 16 terminal lincs, and a 9 track
, streaming tape drive (no tape drive was included in the original VAX 11/730 system).
Hardware and software were also purchased to tie the VAX 11/785 into Clarkson's campus-wide
a
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computer network. The physical link is through the University’s VAX 11/780, but this is tied to the

." other computers on campus, which is linked to other universities though BITNET. This tie in of the
VAX 11/785 allows the users of this research computer access to many of the other facilities of the
university, such as high speed printers, digital plotters, laser printers, etc. It also allows

researchers with terminal connected to the other computers on campus to sign on to the VAX 11/785 as

':!" though they were directly connected.

:: The Tektronix 4115B computer display terminal, which is connected to the VAX 11/785 computer,
3 has recently been expanded to improve its capabilities. Both a 3-dimensional wire frame and a shaded
-‘: surface option have been added. These options allow the terminal to locally manipulate 3-dimensional

objects, such as rotating them in 3-dimensional space, removing hidden lines, drawing shaded
surfaces, etc. These expansions result in this terminal being equivalent to a Tektronix 4129
terminal, which is the most recent high-end terminal introduced by Tektronix. The total cost of
these options was $16, 475, which was made possible through contributions from Gleason Foundation,
Proctor and Gamble, Tektronix, Coming Glass Works as well as the University’s School of
Engineering.

A grant from the National Science Foundation (Grant No. DMC-8500627), with M. Sathyamoorthy
and K.D. Willmert as principal investigator, included funds totaling $10,715 for the further
expansion of the graphic facilities. A Tektronix 4692 color graphics copier, a Tektronix 4107 low
resolution graphic terminal and two Z-200 personal computers were purchased through this NSF grant.
These purchases complement the high resolution Tektronix 4115B terminal obtained through the
DoD-University Research Instrumentation Program. In addition to these equipment funds, this NSF
grant provided, as part of its Cooperative Program on the Use of Supercomputers, twenty-five hours of
CPU time on a Cray X-MP supercomputer. The program development and trial runs were done on the DoD
funded in house VAX 11/785 research computer with final runs made at the supercomputer located at the
University of Illinois.

A summary of funding sourccs including the 1984-85 DoD-URIP Grant to purchase the VAX 11/785
rescarch computer and other associated equipment (including upgrades) is given below:

DoD - University Research Instrumentation Program 101567

(3
o
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Digital Equipment Corporation Contribution $120.852
Tektronix Discount and Contribution $11,110
National Science Foundation $10,715
Clarkson University’s College of Engineering Contribution $56,999
Department of Mechanical & Industrial Engineering $3.176
Clarkson's Educational Resource Center $3,300
Gleason Foundation $7.000
Proctor and Gamble $5,300
Corning Glass Works $337

TOTAL $320,356

As a result of contributions from all of these sources, the total value of the equipment within this
laboratory exceeds $300,000 for an investment of only slightly over $100,000 from DoD.

A recent grant from the National Science Foundation (Grant No. INT-8616036), with K.D.
Willmert and M. Sathyvamoorthy as principal investigator, will help accomplish all the remaining goals
of the current AFOSR research. The funded NSF research involves a cooperative effort between the
principal investigators and a collaborator at the Korea Advanced Institute of Science and Technology
in the Republic of Korea. The particular project will require the development of a joint clearance
model for mechanical mechanisms and its inclusion in the vibrational analysis of linkages undergoing
large deformations due to high speeds and large loads. Also included is the study of the optimal
design of counter weights to reduce, as much as possible, the joint forces. The duration of the NSF

rescarch will be until December 1989.
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Pennsyvivania State University, University Park, Pennsylvania, October 1985, p. 10.

. D.W. Tennant, K.D. Willmert and M. Sathyamoorthy, "Finite Element Nonlinear Vibrational Analysis

of Planar Mechanisms,” Paper published in the Special Issue of Material Nonlinearity in Vibration
Problems, AMD Vol. 71, ASME, November 1985, pp. 79-89.

D R. Boston, K.D. Willmert and M. Sathyamoorthy, "The Development and ~p;ication of Gauss’
Nonlinearly Constrained Optimization Method,” Computer Methods in Applied Mechanics and
Engincering, Vol. 57, No. 1, 1986, pp. 17-24.

Edward Kear III, M. Sathyamoorthy and K.D. Willmen, "Vibration Analysis of Mechanisms with
Geometric and Material Nonlinearities," Paper presented at the Joint AFOSR-SES Mecting, State
University of New York at Buffalo, August 1986.

E B. Kear IIl, M. Sathyamoorthy and K.D. Willmert, "Effect of Geometric and Material
Nonlinearities on Vibration of Planar Mechanisms,” Paper presented at the ARO/AFOSR Meeting on
Nonlinear Vibrations, Stability and Dynamics of Structures and Mechanisms, VPI & SU, Blacksburg,
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..: 4. INTEGRATED DESIGN OF STRUCTURE AND CONTROL

o X3
L0

by Vipperla B. Venkayya

X

\-. .
P - introduction

‘: The panel identified several presentations relevant to the subject
N B

of integrated design. They included the following:

.

. . . . .

AN 1. Ken Willmert of Clarkson University on the optimization of flexible
' mechanisms;

L

. - .

AN 2. Mohan Aswant and G. T. Tseng of The Aerospace Corporation on
:;: continuum modeling of the plant as one means of simplifying
= \_'-

; o structure-control optimization problems;

:"I 3. Manohar Kamat of VP|I on the issues of plant nonlinearities
¥ (geometric and material), proposing that they be considered in
b “ control system design;

- 4. Moktar Salama of JPL on structure-control optimization with a single
::: performance index consisting of the structural mass and the total
- l control input;

SO 5 Dale Berry of Purdue University on continuum modeling as a means
N

::' - of reducing plant dimensionality;

. 6. K. C. Park of Lockheed Palo Alto Research Lab on the use of
w

. transient energy density profiles to achieve optimum disturbance
j: - dissipation and control;

; -~ 7. John Junkins of VPI on some recent results of eigenvalue placement
; via structural parameter optimization.

t:' The material of these presentations was, to a certain extent, the basis
. : for the panel discussions.

N - The panel proposed the following five topics for discussion:

'S »
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DESIGN

t DYNAMIU MECHANICAL SYSTEMS
UNDERGOING LARGE DEFORMATIONS

K. D.

Willmert

M. Sathyamoorthy

Mechanical and Industrial Engineering Department
Clarkson University

Potsdam,

Introducgion

Trne general purpose of most wmechanical devices
18 to produce accurate two or three-dimensional
Tovement of objects. However, for large external
.vads and/or nigh speed operation, sufficient forces,
50Ch 1nertial and externally applied, are produced to
cause their members, joints, sod support etructure to
lercrm. This results 1n a loes of accuracy of the
levice. To solve this problem, the current design
srovedure 18 to increase the stiffness of the members
5y modifying their cross—sectional sizes (commonly by
increasinyg the areas) or changing the material wused

t2 reduce the defurmations and stresses. The result
16 & more massive device which 18 difficult to
_oneral, requiring aore power to drive and

interacting with 1ts structural support to an even
greater extent.

Optimization methods have been applied to
determine the member sizes by minimizing the weight
subject to limitations on deformations and stresses.
This can reduce the overall size of the device, but
e resuit 16 still pot the best design. The
firrisulty lies in the baelc seraration of variables
[ te leRlgN process. The device configuration

Lo, the number and type of members and joints) and
tre meoder lengthe are designed first to produce the
jesitel DoOTLLON, assuming the members are rigid.
Trec, independently, the cross-sectional sizes are
ietermined 80 that the actusal motion deviates as
. # a8 possidbie from the rigid body motion. In
tnis pro-edure, the deformations of the members are
reneilered t> have a detrimental effect on the
overaii moticn. The goal, therefore, 18 to restrict
.T teduce them. owever, these deformations can
iztuaily de used ty amprove the motion of the device
it tne geometric design variables (member lengths,

T ., 4nd ross-sectional eirzes of the wmembers are

<bined and trested as & single set of design
«dr:av.ee. Thus, the combined design problem 1is to
.#2t ail of the design variables so that the actual
©ion of the device, which 16 & combination of the
tigid  bcdy motion plus the deformations, 18 as close
as cssible to the desired motion. The wusual rigid
Doo3v constraints exist on this problem, such as
Limitations on  the moveability of the device,
1tions  of  the support points, lengths of the
v¢rs, etc. But also present are deformation and
tress _unstraints, and natural frequency limitations
454 - iated with the flexibility of the members.

S

Derending on othe type of motion desired, 8peed
Cl reraticn of the device, and restrictions on the
v, thne solution _f this design problem will be a

NY 13676

mechaniem 10 which the deformations of the members
serve to aid the mechanism in producing the destired
motion. Thus a much wider range of motions 18
possible than could be obtained from a rigid link
device. The optimal design, however, 18 likely to
contain several members which are very flexible <{(anv
wembers that are required to be rigid caog be designed
using appropriate constraiots). Because of these
large deformations, & genersal nonlinear vibraticnal
deformation and stress snalysis 1is required. The
types of nonlinearities include:

1. Nonlinear curvature-displacement relations
2, Extension or stretching of the neutral surface

3. Material nonlinearities (nonlinear stress-
strain)

4. Effects of traneverse shear and rotatory
inertia due to realistically proportioned wembers

5. Joint clearances

6. Varisble nature of the cross-section »f{ the
members

7. lateraction of the mechanical device with the
support structure

8. Coupling of the degrees-of-freedom due to large
deformations.

A typical analysie which takes into account all of
these nonlinearities is iterative in nature requiring
several 1iterations to obtsin a solution.

Becsuse of the complex nonlinear analysis
required, which wmust be done many times during the
optimization phase, considerable computational time
18 needed for this design procedute. Experience has
shown that four to eight hours of computer time 18
common to perform just one analysis of a single
plenar four-bar or slider crank mechanism on an [IBM
4341 computer. For more complex planar mechanical
devices consisting of additional links, gesrs, cams
and other elements, considersbly longer times would
be expected. For three-dimensional wmechanisms, as
ex1iet in many applications of mechanical
maolpulators, automotive suspensions, etc., enormous
computational times would be 1nvolved--again tu
perform just one analysis.

The mathematical optimization techniques
currently available for solving optimal design




4
v
.

prodiems all require several iterations to vbtain the
test design. Some methods involve a large number of
1terations, with esch 1terati10on requiring numervous
tobtaining numerical values tor the
~tcective function end coastraints for particular
valurs of the design variables). These methods are
stejuate 1f the design problem 18 small. since
computational times are relatively insignificant,
However fcr large design problems, or ones in which a

anaivses

complex analysis 19 required. 1t is extremely
important that the optimization technique be
efficient, oparticularly in terms of the number of

analyses rejuired. Even then, the solution of these
rroblems 18 1mpossible on wost computers currently a-
universities. The availsbility of a euper computer
t> accomplish the optimal design of large mechanical
svetems :s absolutely necessary.

Research Problems
The particular research problems in the area of
sptimal design of dynsmic mechanical systems which

recuite the use of super computers are:

L. Noriinear Analysis of Mechanisms

Ohjective: Develop s large amplitude nonlinear
teformation, stress and frequency analysis of two and
three-dimensiona! mechanical systems undergoing high
speed motion subjected to large external loads.
Inzlude:

* Geometric and material nonlinearities

* The effects of transverse shear and rotatory
tnertis

* Joint clearsnces

* Interaction of the mechanical devices with
the support structure

* Coupling of degrees-of-freedom due to large
leformations

Supercomputer needs:
v
* Complex nonlinear analysis requiring enormous
amount of computer time due to the iterative
nature of the problewm.

* Solutions to very complex mechanical devices
consisting of many links, gears, cams and
other mechanical eleuments.

fetimated reduction of computer time:

100 to 1

*

Efficient Optimization Methods for Nonlinear

‘
Mechanisms Design

“bjective: Develop efficient optimization methods
with tre following characteristics to handle
nonlinear mechanism design problems:

* Minimize an objective function composed of a
combination of vrtigid body and deformation

displacements

* ‘'se geometric and cross-sectional size design

varisbles

n

* Handle geomelric, detormation, stress as
frequency constrgints

* Requires & 9dmal. number of tunctien
evaluations !iteraticns. to obrasn stiman
design

Supercomputer needs:

* Combining nonlinear analysis and optimization
tavolves a considerable amount of computer
time for each solution.

* To handle objective functions which are highly
nonlinear functions o>f the design variables.

Estimated reduction of computer time:

100 to I

A
MY A
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Nonlinear Analysis and Design
of Flexible Mechanisms

K. D. Willmert, and
M. Sathyamoorthy
Clarkson University

A finite element approach is presented here for the nonlinear vibrational analysis of
planar mechanisms. The analysis takes into account the effects of material and geometric
nonlinearities on the dynamic behavior. The geometric nonlinearities included in this
study are due to stretching of the neutral axis and the curvature-displacement nonlinearity.
both caused by large deformations. The material nonlinearity is due to a nonlinear stress-
<train relationship of hermite polynomials which ensure compatibility of curvative between
elements. Using a variable correlation table. a global svstem of nonlinear equations i«
derived in termes of the global unknowns and the kinematics of the mechanism. A harmonie
series technique is then used to obtain the steady state solutions to this syvstem of nonlincar
equations. Numerical results are presented for an example mechanism and the effects of
the noninearines are discussed.

An optimization technique which s applicable to problans consisting of nonlinear
objective tunctions and constraints, such as the one precented here, has also been developed
ard reported  The technique. called the Gauss Nonbinearlv Constrained Technique. is

Hhastrated with examples.
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THE GAUSS OFTIMIZATION METHOD FOR
PROBLEMS WITH GENERAL NONLINEAR CONSTRAINTS

T. E. Potter, K. D. Willmert and M. Sathyamoorthy

Mechanical and Industrial Engineering Department
Clarkson University
Potsdam, NY 13676

ABSTRACT

A new algorithm is presented for finding the minimum
of a nonnegative objective function subject to general
nonlinear constraints. This algorithm, based of Gauss’
method for unconstrained problems, is developed as as
extension to the Gauss constrained technique for linear
constraints. The derivation of the algorithm, using a
Lagrange multiplier approach, is based on the Kuhn—-Tucker
conditions so that when the iteration process terminates
these conditions are automatically satisfied. A feasible
design 1s maintained throughout the iteration process. The
solution of preliminary examples indicate excellent results
in terms of the number of objective function evaluations
required by the algorithm to obtain an optimal design.

INTRODUCTION

The optimal design of many complex structural and mechanical
systems is hindered by the large computational times involved. Most
currently available optimization techniques require a large number of
analyses to obtain the optimal design. For small problems, or ones
1n which the analysis is simple, these methods are adequate; however,
for large problems, or where a time consuming analysis is required,
more efficient optimization methods are needed. The goal of this
research was to develop such methods, particularly techniques
applicable to mechanical mechanism design where the members are
deforming because of high speed motion and large external forces.
Computational times to perform a single analysis are enormous for
problems of this type involving large deformations with nonlinear
material characteristics. Thus the goal of the methods developed was
to reduce the number of analyses, even at the expense of increased
omputational effort 1n the optimization technique i1tself, 1.e.
additi1onal effort 1n finding new candidate design points to analyce.
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“"he methods Jdeveloped take advantage of the special
haracteristics of the optimirzation problem, similar to the
Jptimality criterion techniques. This greatly i1mproves their
2fficiency. For most mechanism design problems., the ob,ective
~unction can be formulated as a sum of squared quantities such as
the difference between the desired performance and the actual
performance of the mechanism at specified points during i1ts motion.
Thus the techniques were developed specifically to handle problems
2f this type, although the methods are applicable to ob,ective
runctions which are general sums of nonnegative quantities. such as
~eir1ght. Many mechanism problems have constraints which are only
linear functions of the design variables. Thus a special method was
Jeveloped for problems of this type. Other problems have
zonstraints which are linear or gquadratic. and another method was
Jeveloped for this case. Some mechanism design praoblems have more
general nonlinear constraints. Methods to handle these cases are
Zurrently being developed.

All of the techniques developed in this work have been based
on bGauss’® methad (11 which is applicable to problems without
zonstraints. Wilde [2] has shown this method to be particularly
afficient on simple mechanism design problems. The research
presented in this paper has extended this method to handle various
types of constraints common to more complex mechanism design
problems.

FORMULATION

For an unconstrained sum—-of—-squares objective function

where + 1s a vector of linear or nonlinear functions ¢, thru ¢ 1n
<. the Gauss method_for calculating the next iteration’af the

jesign variables, xy+1, given a current design, xk, 1s:
—_ - EN T - - 1 = -
= - - . . hed
Kk+1 Ak [J(xk)u (xk)] J(xk)¢(xk), (2>
~here
i
R | R ! . T
J(x) = V#l(x) . e e V¢P(«) = Ve . ()

It 15 observed that only first derivatives of the ¢ functions are
reguired and that the new design point 1s calculated directly from
the current design without using a step length determination with
3ssoci1ated one dimensional minimization. Himmelblau (1] has shown
“H135 method to be veryv 2fé1c1ent for unconstrained minimication
sroblems.
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This technique has been extended to handle linear i1nequality

constraints of the form
i = =T .
|. 9. 0x) =b x - ¢ =0, 1 = 1.....M €4)
) as well as equality constraints
-'; - .'.T...
R h o (x) = dix - el = 0, 1 = lee.a,l (S
. In the derivation of the optimization method, the ¢ functions are
N assumed to be linear 1in x of the form .
. $ = 3% + u. &)
} where J 1s a constant matrix. However the resulting technique 1s

applicable to problems i1n which the ¢ "s are general nonlinear

functions of x.

At 1teration k., the L equality constraints and any of the
1nequality constraints that are active can be combined and written
in the form

B'x - C = o. (7)
If at the next iteration., k+1, the variables ; are at the optimum

design, then the Kuhn-Tucker conditions will be satisfied

Vf(xk+1) + Bx = O (8)
TA -
P - )
B xk+1 [ 0 (Q
and
Xz 0 (10)

where X is the vector of Lagrange multipliers. The gradient of f 1s
given by

FF(X) = 2J4(x). (11)

Expanding #(x) in a Taylor series results 1in

" - T - -
=40 - (12
*0x, $G )+ J [Xk+1 ‘k] + (higher order terms) 12)

It 1s noted that the higher order terms are equal to zero 1f ¢ is
linear. If ¢ is not linear then these terms will be neglected and |
the expansion is only approximate, If equation (12) is substituted ;

into equation (11), evaluated at X e1? the result 1s

+ JT[‘ - Qk] i (17

2744 N
Vf(xk+ ) 2J | ¥ (x Ak+l

1 p )

This may be substituted 1nto the first tuhn-Tucter condition,
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equation (8), and then solved for

hert
-1

- - T A -

" = - 2 2 P + - (14)

L X, [ JJ ] [ Je( k) Bx]
Plugging this equation “or ; 1 1into the second Kuhn-Tucker
condition, equation (9), yields

T a T L >

B X T cC - B [ZJJ ] [2J¢(xk) + BX] = 0. 1%

If the samg set of c?gstraints that are active at ; .y were also
active at x , then B x, - C = 0. Using this result, equation (13)
can be solved for A as

-1 -1
A= - [B [2357] B] 87 [2347] 208G (16)
Substituting this back into equation (14) and simplifying yields an
iterative expression for x which will give the optimum solution
if the constraints that are active at the optimum point (iteration
k+1) are active at iteration k:

X =% -1 - [4d7]

R T e I T S R TP
= o505 6| 67| [07) st an

k

This expression is equivalent to that derived by Paradis and
Willmert [3] using a Gradient Projection method as the foundation.
The technique converges to the optimal design 1n one i1teration if
the objective function, f, is quadratic and the starting point is on
the constraints which are active at the optimal design. I+ f is not
quadratic, the technique can still be applied, but it will
generally require several iterations to reach the optimal design.
When the technique terminates, the Kuhn—-Tucker conditions will be
satisfied independent of the form of the objective function.

Paradis and Willmert demonstrated the efficiency of this method
by solving several examples. One example presented was the optimal
design of a four-bar mechanism to generate a desired coupler point
path. The Gauss constrained technique was compared with the
Davidon-Fletcher-Powell method using an interior penalty function
approach to handle constraints. Using four different starting
points, the Gauss constrained method required from 23 to 33
obj;ective function evaluations whereas the Davidon-Fletcher-—-Powell
method required from 209 to 622. While not all starting points
vielded the same optimal design, both methods reached the same local
minimum from each starting point. Other examples also showed
considerable improvement over existing methods.

The Gauss method has also been extended to 1nclude quadratic
inequality constraints or gquadratic approximations to higher order
nonlinear constraints. In this work the constraints are assumed to
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Nave the form

3 () = AA T+ B i -Cc 20, 4= t.....M (18)
1 2 1 1 1
I+ at 1teration k+1 there are r active constraints (r = M), the

Kuhn-Tucker conditions will be

r
" ) S '. g = () (19
v vet” UL [A) ber T 8) AJ
3=1
- =T~
é‘( T < B x« - C = O, y = le...,r (20)
S k+l 4, k+1 3 k+1 )
and
20 21)

where the summation 1n equation (19) and the ; subscript 1n equation
(20) refer to the set of active constraints only.

Using a derivation similar to that for linear constraints,
substituting the expression for the gradient of f, equation (13),

into the first Kuhn-Tucker condition, equation (19), and solving for
Kk+1 produces

-1
r r
- T T¢ - - -
N = ) o) N - \ — .
X ey 233+ Z A X 230 %, — VEG) Z RN (22)
_)‘l J_l
This expression for ;k+1 1in terms of N 15 nNnow substituted i1nto the
second Kuhn-Tucker condition. equation (20), to obtain:
T
r -1 .
1 T . T= > =
3299 ¢+ A, 203 %, - VEGK) - z B X,
3=1 5=1
r -t -
A llzaaT + S A 2337x, - Vx> - 5 B A
1 =1 J 2 k k =1 J J
3= J
r -1 L
+ B ||2007 + > A 2007%, - VG - 3 B A
1 Sy 000 k k Sy 000
J J
- C = 0, 1 T Lleeaasl. (23)

These r nonlinear equations 1n_terms of the new unknowns, X, thru xr
and the old design vari1ables, <, , are solved by an 1terative process
for the values of » thru » . he lambda values are then substituted
1nto equation (Z7) which wx?l yireld new values for the design
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vari1ables. [t 1s observed that the matri. EJJT 1s the matrix of
second partial derivatives, G, of the ob,ective function 1f 1t 1s
quadratic. Thus, by replacing 2JJ 1n equation (22) and (23), this
technique becomes a modification of the second order method rather
than the Gauss method.

At the optimum design all constraints will ei1ther be satisfied
(less than zero) or active (equal to zero) and each active constraint
will have a corresponding lambda whose value 1s greater than or equal
to zero. If, at some 1teration the set of design variables yields a
violated constraint, then obviously the optimum point has not been
reached. In thi1s case, the newly violated constraint will be added
to the set of active constraints and the procedure allowed to
continue. If at some 1teration the set of design variables yields
all active or satisfied constraints, but one or more of the active
constraints has a corresponding negative lambda, then the optimum
design has also not been reached. The negative lambda implies that
the i1teration process would like to move away from the corresponding
constraint boundary toward the feasible reqgion where the constraint
15 satisfied. Thus, the constraint is dropped from the set of active
constraints and the process allowed to continue. 1+ more than one
negative lambda existed, then constraints are dropped one at a time
starting with the constraint with the most negative lambda.

A constraint is added to the set of active constraints 1f 1t
should become either active (equal to zero) or violated (greater than
cera) when the step 1s taken from %, to x . In the case where a
constraint becomes violated, a line is "drawn' between x, and x 1
and the actual step 1s taken to the farthest point along the line so
that no constraints are violated. In effect, this procedure is the
same as stepping back from x toward x, until the newly violated
constraint 1s just active (equal to zero§. The constraint i1s then
added to the set of active constraints for the next iteration.

An example problem with quadratic constraints given by Boston,
Willmert and Sathyamoorthy (4] shows this method to be very efficient
when compared to the generalized reduced gradient method (GRG). The
problem consisted of finding the optimal design of a four-bar
mechanism (minimizing the coupler point path error with respect to a
given path) subject to several linear constraints on link length and
movability. Additionally, constraints were placed on the crank pin
to limit its location to the intersection of two circular (quadratic)
reglons. The program was run for a four by four matrix of problems
which i1ncluded four different starting points and four different
conditions of the gquadratic constraints. For all sixteen runs, the
number of ob,ective function evaluations for this new method ranged
trom 8 to I2 (average was 15), while the GRG method required from IO03
to 499 (average was S02) evaluations.

The 1nteresting i1nformatior here 1s that +the calution to this
quadratically constrained four-bar mechanism used no more ob,ective
function evaluations than the linearly constrained four-bar mechanism
2:ample by Faradis and Willmert. While these two examples are
necessarily different, this tendenc, toward requiring similar numbers
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ot function evaluations for di{ferent classes of problems 135 very
Jesi1rable. The net result 15 that we now have an optimization
procedure for sum of squared qQuantities ob,ective functions sub,ect
to linear and quadratic constraints that not only requires relatively
few function evaluations, but seems to be constraint order
1ndependent. Now the need 1s to determine a method which will also
work for higher order constraints.

Boston, et al. [4] attempted to apply this method to higher
aorder problems, but met with mixed results. The problems encountered
seemed to tie in with the higher order constraints rather than with
the higher order ob ective functions. There are several limitations
implicit 1n the algorithm which appear to be the source of the
problems encountered. The first limitation has to do with the
application of the constraints, equation (18), to the first
Kuhn-Tucker condition, equation (19). When approximating a higher
order function by a quadratic Taylor series expansion about some
point x_., not only is the A matrix a function of x ., but so 1s the
B1 vector and the C. scalar} Thus the constraint approximation,
equation (18), should be written as

T
- 1AT - - - - - -
> = 5 (e ; x — C. G < 0, = 1,0 (24)
gl(x) 2< Al(xo)x + [Bi(xo)] < C1(<0) 0, 1 1, .M
where
- -
¢ = xo + ax. (2%)

As x approaches ; (or A; approaches 0) then this approximation
approaches the exact value of the constraint. Thus as the algorithm
progresses along and constraints are added and dropped, the
constraints must be reapproximated at the latest design to keep the_
step size small. This can be achieved by taking the new values of x
as generated by equation (22) and substituting them intg the_ actual
constraint equations to get improved values for the Ai(x ) Bi(xo),
and C (xo) terms in equation (24) with respect to the current design
point.

The second limitation involves the second Kuhn-Tucker condition,
eguation (20), which is used to obtain the equation for the new
values of A, equation (23). This 1s simply the equation for the
active constraints. In the original formulation, an attempt was made
at obtaining a linear approximation in A for this constraint
gquation. This would allow equation (23) to be solved explicitly for
X. However, fajling this an iterative procedure was employed to find
the values for a. Now that an iterative process is required there is
no advantage 1n keeping a quadratic approximation when the actual
constraint will work just as well. Replacing equation (20) with the
active nonlinear constraint equations will remove any errors due to
the approximation process.

The stepping back procedure for violated constraints, described
above. can also be a source of problems. With non-corvex programming
problems this procedure may lead to a situation where the algorithm
cannot move away from a non-optimum design. Because the stepping




g bacl procedure assumed a straight line path between the two design
| points, 1t 15 possible. when backing out ot a newl, violated
) constraint, to move i1nto the violated reg:on of the constraint that
“ was active at the beginning of the step. The procedure would then
step back still further until all constraints are satisfied. It 1s

‘ possible to end up with the same set of act:ve constraints as at the A
?. start of the 1teration. In this case the next 1teration will produce ¥
. the same design, which may be non-optimal.

+ LR

Two alternatives are readily apparent which may solve this
problem. The first one 1s that when a constraint becomes violated,
repeat the step but i1nclude the newly violated constraint in the set
of active constraints. The second alternative 1s to move to the
point where the constraint 1s violated, and then 1terate from there
wi1thout stepping back. O0Of course, the violated constraint 1s
added to the set of active constraints. Boston, et.al. [4] looked
into thi1s second alternative to some extent. They reported that 1t
did not always work. However, 1t is not clear 1f it was the "no
stepping back" that was the cause of the problems or i1f the second
order approximations to the constraints contributed to the problems.

In summary, the Gauss nonlinearly constrained technique is very
effective at solving quadratically constrained problems. No ma;or N
difficulties appear to exist which would preclude it from solving N
problems with higher order constraints once the modifications
discussed above are implemented. This method with the proposed
modifications is currently the leading candidate as the best method
for solving highly nonlinear mechanism design prablems.

RESULTS )
A verification of the effectiveness of the Gauss constrained

method applied to problems with quadratic constraints 1s obtained by
solving the Rosen—-Suzuki test problem (5]:

. - 2 2 2 2 29 >
1 i = - - - +
minimize F(x) kY o+ X, + 2x3 AL 5x1 sz X a4 )
sub,ect to:
” R 8 <0 \
= Kh - - - + < - 7 + - ? - e
g, &) 1 TR T Xz Y X, - T S
(% 2 2 22 10 < 0
s = i + 72 2 - - - <
g2 ®) 1 <2 + xJ + x4 Xy Xa
gz(x) = 2x; + ME + %% + 2x1 T S £ 0
The optimum design for this problem 1s at x = [0,1,2,-1]

Two versions of the Gauss nonlinearly constrained technigque and
the general:i1zed reduced gradient method. 1dentified as GRG. were used

o,
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trom four different starting points. One version of the (Gauss

nonlinearly constrained technique, 1dentified as GNLC, uses the
- steppi1ng back procedure and requires a feasible starting design and
. will always maintain a feasible design. The other version,

identified an GNLC.NS, does not use the stepping back procedure and
has no requirement on the feasibility of the desiqgn at any stage of
the optimization. The results are summari1zed i1n Table 1. It can
easi1ly be seen that the Gauss nonlinearly constrained technique 1s
much more efficient with respect to number of function evaluations

n than the generalized reduced gradient method.

- STARTING NUMBER OF FUNCTION

- ALGOR I THM DESIGN. x ITERATIONS EVALUATIONS

» GNLC.NS [0,0,0,0] 2 3

- GC. NS [1.1,1,1] > 3
GC.NS {2,2,2,2] 2 z
GNLC.NS fo0,0,VY5,0] 3 4
GNLC [0,0,Y5,0] 3 4

. GNLC [0,0,0,0] S b
GNLC (1.1,1,1] S )
GRG [0,0,Y5,0] 9 83
GRG [0,0,0,0] 11 106

. GKRG (1,1,1,1] 11 133

h GRG [2,2,2,2 11 144

Table lI: Comparison of Algorithms

CONCLUSIONS

The optimization techniques developed 1n this research as
extensions of the Gauss method to handle various types of
constraints are effective approaches to‘reducing the number of
- analyses required to obtain an optimal design. As a result, the 1
a computational time for large problems should be reduced
significantly.
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FINITE ELEMENT NONLINEAR VIBRATIONAL ANALYSIS OF PLANAR MECHANISMS

D. W. Tennant, K. D. Wilimere, snd M. Sathysmoorthy
Department of Mechanical and industrial Engineering
Clarkson University
Potsdsm, New York

ABSTRACT

A finite element approach is presented in this paper for the nonlinear vit-
brational analysis of planar mechanisms. The analysis takes into account the
effects of material and geometric nonlinearities on the dynamic behavior. The
geometric nonlinearities included in this study are due to stretching of the
neutral axis and the curvature-displacesent nonlinearity, both caused by large
deformations. The material nonlinearity is due to & nonlinear stress-strain re-
lationship of the Ramberg-Osgood type. The analysis presented here makes use of
hermite polynomials vhich ensure compstibility of curvature between elements.
Using & varfable correlation table, a global system of nonlinear equations are
derived {n terms of the global unknowns and the kinematics of the mechanism. A
harmonic series technique is then used to obtain the steady state solutions to
this system of nonlinear equations. Numerical results are presented for an ex-
ample mechanism and the effects of the nonlinearities are discussed.

INTRODUCTION

The importance of flexibility of linkages on the performance of high speed
ainisun-nase mechanisms is well recognized. A considerable amount of research
has been done in this area in the last two decades. While {t is desirable to
develop analytical and numerical procedures that enable the design of rigid link
mechanisms and robots to perform a given function with specified reliability, it
i{s also important to evaluate the effects of flexibility of elastic members on
on their performsnce. It is known that a mechanism designed for operation at
lov speeds may not perform satisfactorily at high speeds due to the effects of
large inertia forces and resulting slastic deformations. Thus it becomes
necessary to include in the dynamic analysis of mechanisms, not only the effect
of the rigid body motion, but also the flexibility of the linkages.

Most of the previous investigations in the area of elastic analysis of
mechanisms have been carried out within the fremework of the linear theory [1-
17]. However, Viscomi and Ayre (18] used a Galerkin-type nonlinear analysis
procedure to study the vibrations of a slider-crank mechaniss. A later work by
Sadler and Sandor [19] used the lumped parameter approach to a nonlinear dynamic
model of an elastic linkage. The mechanisem analyzed in this paper was a general
four-bar linkage and the analytical model included the response coupling associ-
sted with both the transmission of forces at the pin joints and the dependence
of the undeformed motion of a link on the elastic motion of other links. A
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finite element analvsis, with the aid of the piecewise linear method of Martin,
was used by Sevak and Mclarnan [20] to carry out the nonlinear analysis of a
mechanism. Further nonlinear work dealing with the vibrations of elastic mecha-

nisms are reported in References [21-23]. 1In a recent investigation, Thompson
and Sung {24] used a variational formulation for the nonlinear finite element
analvsis of planar mechanisms considering geometric nonlinearities. Some experi-

mental results were also presented.

This paper is concerned with the nonlinear vibrational analvsis of general
planar mechanisms. A finite element method is used which includes the effects of
both geometric and material nonlineariries. The geometric nonlinearities in-
cluded in this study are due to stretching of the neutral axis with partially
constrained ends and a general curvature-displacement relationship, both caused
bv large deformations. The material nonlinearity is of the Ramberg-Osgood type
with three parameters to reprecent the nonlinear stress-strain relationship [25-
27]. Additional effects considered are transverse shear and rotatory inertia
and changes in crogs-section due to realistically proportioned members. The
governing nonlinear differential equations are derived for each element in terms
of the axial and transverse deformations, rotations, curvatures, and shear defor-
mation angles. These equations are then assembled with the aid of a variable
correlation table and the resulting global system of equations is solved using an
iterative technique based on a harmonic series solution procedure.

FINITE ELEMENT FORMULATION

A finite element method is presented below for the nonlinear analvsis of a
general closed looped mechanism. The mechanism can be composed of various com-
binations of simple four bar chaing, frame elements, sliders moving on fixed ref-
erences, or sliders moving on rotating links. Each link is divided into one or
more elements with each element having the local coordinate system as shown in
Figure 1. If a slider is present, the masses M; and Mp are located at ends 1 and
2, as shown. The length of the element A4 is constant except for links with
9liders moving along them.

The displacement vector of any point (a) on the element's neutral axis is
given by:

S = (X) cosy + Y| siny + x + u)i + (Y| cosy - X1 siny + w)j (1)

where X and Y{ are the coordinates of end 1 of the element given by the rigid
body motion. The coordinate x is measured along the element's neutral axis from
1 to 2 and vy is the angle between the rigid body position and the X-axis. The
axial and transverse displacements of point (a) from the rigid body position are
given by u and w, respectively. This equation takes into account both the rigid
body motion and the elastic displacements and defines the position of any point
along the neutral axis.

Differentiating Equation 1 with respect to time vields the velocity of any
point (a). The unit vectors i and j move with coordinate system and vary with
time. The angular velocity of any differential line segment on the neutral axis
of the element is given by:

Yoo ¥ Waxe (2)
where v,, is the derivarive of vy with respect to time and w,,, is the derivative

of the transverse displacement with respect to the local coordinate x and time t.
The kinetic energy due to rotation of the element is given by:

5 al
K.E.q = 1 iz rl[;AXIS.tIZ +ol(y,p + w,xt)zldx dy
R77 by o d
2
1 1
*E.“.lls,t!iso*"ileS‘t"z‘_A 3

where ¢ is the mass density and A, and I, are the cross sectional area and moment
of inertia of the element respectively. The term ol (v, + w,xc)l/z represents
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the effect of rotatory inertic. The kinetic energy due to beam bending associ-
ated with transverse shear (28] 1s:

h

‘;sz,g}dx dv (4)

talr

K.E.g =
5}

s

where 1 1s a measure of the transverse shear angle.
The strain energy for the element is given by:

. 1
U ol 5 de dvol + .vol 5 Txy Txy dvol (5)
where *, <, “yy, and v,y are the normal stress, normal s cain, shear stress and

shear strain, respectively. For a nonlinear material of the Ramberg-0Osgood type
[ 25-.7), the relationship between stress and strain is:

1= A ¢ -8 W (6)

where A corresponds to Young's modulus E, and Be™ represents the nonlinear term.
A, B and m are constants for the particular material being considered. The above
relationship, Equation 6, 1s valid only for positive strains. If the strain is
negative, the following expression is used:

T A + B (- if £ 0 (7)

e change in sign of the nonlinear term results in the same overall effect on
the stress-strain relationship as for positive strain, i.e. either hardening or
softening depending on the values of B and m.

Using the Ramberg-Osgood relationship, the following expression for the
strain energy 1s obtained for positive strain ¢ > O:

h h
7 043,1 1 2 081
' = ‘= 2 . — g . .ml k 2 2
u h 3 A e et B - dx dy + ‘ho- 3 ny Yky dx dy (8)
=S 0 -- o
2 2
where x is the axial coordinate, v is the transverse coordinate, and Gyy 18 the
shear modulus. When ¢ < 0 the equatior is:
h h
2oea 1 2 41
T o= i A el o _eymely re 7T 2 2
U h 2 € o B (-¢) ldx dy + h 2 Gxy vky dx dy 9)
2 2

The nonlinear expression for the curvature R of a planar static beam under-
zoing large deformations 1is:

. L (10)

(1 + w‘i):”2

x [

Thus the strain is

vV w,
E--%.-___L__ (ll)

1. w‘i)J'/l

Combining the geometric nonlinearities due to stretching of the neutral axis and
the curvature-displacement nonlinearityv, results in the expressions for normal
and shear strain:
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“~ € " u,x + 35 Dgw.x ‘_‘—_—“——7”37; (12)

(1 + Dy w,%)
S +a (13)

Substituting these expressions for strain into the strain energy Equations
(8) and (9) produces, for € > 0 or € < 0:

h
FI y a,
S.Z.-f;"‘fb{%A(u,x+%Dsw.+———x——2
-— O (1 + Db H,2)3/2
2 X
y a,
! i B(:u.x:%st,%t——l——)m*l
Lads (1 + 0y w,2)372
+ % Gyy (Wix + a)2}dx dy (14,15)

For equation (15) negative sign is applicable in all the terms containing + signs
and is valid for € < 0. In Equations (12), (14) and (15), Dy, Dy and Dy are
tracing constants representing the effects of material nonlinearity, geometric
nonlinearity due to curvature, and geometric nonlinearity due to stretching of
neutral axis, respectively. Each tracing constant is equated to unity when that
particular nonlinearity is being considered and is equated to zero when it is
not.
In order to represent realistically proportioned members, changes in cross
. section are included. ERach element is divided into sections of varying lengths
133 with constant area. The integrations involved in the element equations are
carried out in a piecewige fashion with the area in each section taken as a con-
stant. This procedure provides a reasonable approximation of variable cross
sectional members without having to resort to large numbers of elements.
The Lagrangian function L is defined as

s Nk
* L~ | [ (R.B.g+K.E.g~S.E.)g (16)
ksl ja1
i where Ny is the total number of elements in the kth link and S is the number of
links in the mechanism. Substituting Equations (3), (4) and (14) into Equatiom
(16), the Lagrangian ( can be expressed in terms of the displacements u and w,
S the shear angle a, and the rigid body motion.
e Hermite polynomials are used to approximate u, w, and a in order to satisfy

the boundary conditions of various types of mechanisme easily and to ensure in-
terelement compatibility. The axial deformation u is approximated by a linear
' shape function given by

ulx,t) = Uple) Ni(x) + Ua(t) No(x) (17)

Similarly, fifth degree polynowmial shape functions are used to approximate the
transverse deformation w:

vix,t) = Hl(t) ﬂll(x) + 51(() Hz[(x) + al(t) ﬂll(*)
+ Wale) Hyp(x) + 87(t) Hyp(x) + my(t) Hyp(x) (18)
The shear angle a is also approximated by a fifth degree polynomial in order to
make it compatible with the transverse displacement w. Therefore a is asaumed
to be:

alx,t) = ap(e) Hyp(x) + ¢1(t) Hay(x) + X(t) Hyp(x)

+ ap(t) Hyg(x) + 4p(t) Hyplx) + Xp(t) Hyp(x) (19)
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! where ¢ and | are the first and second derivatives of a, respectively.
: The Hermite polynomials are given by:
Ni(x) =1 - e ; Nz(x) = e (20)
. Hyp(x) = 1 - 103 + 15e% - 6e> ;  Hyp(x) = 10e3 - 15e¢% + ge>

Hyp(x) = (e - bed + 8e% - 3e3) ;|  Hyp(x) = a(-4ed + Teb - 3e5)
Hypix) = 32(e2 - 3ed + 3e% - e5)/2 5  Hyp(x) = a2(e3 - 2¢% + 572 (2D

where, e = x/A.
A transformation of coordinates is now introduced to change from the moving
' coordinate system associated with the elements to global coordinates. Only Uy,
’ W], Uy and W; need to be transformed. The other coordinates are angles or de-
rivatives of angles which are not directional »n the X, Y coordinate system used.
The transformations are:

Uy = Gl cosdy - il singy ; U = ﬁz cosdy - iz singy
Wy = U] sina| + W] cosey ; Wy = Up singy + Wy cose) (22)
-
For pin connections the transformation angles ¢) and ¢, are set equal to -y (the
rigid body angle) which transforms the coordinates back to the global coordi-
rates. For sliders moving on rotating links the transformation becomes more in-
volved. In this case, the deformation of the driver link must be transformed to
correspond to the axial and transverse deformation of the output link [14]}.
Substituting the expressions from Equation (22) into Equations (17) and
N 18), the global coordinates for the system are then:
a - :'l-fl ‘.41 f-‘]_ r;:ll (;)_ Ll il 1-12 iz 52 1;12 ;2 '112 iz]T (23)
The Lagrangian function is then written in terms of the transformed element co-
ordinates. Differentiating the Lagrangian with respect to the element coordi-
* nates, the following element equations are obtained:
2 2Ly ity (24)

4t 3q., 3q ﬂ

In differentiating the expressions for the kinetic and strain energies in Equa-
t:ons (3), (4) and (14), it must be remembered that A, which is the upper limit
of integration, is a function of time. The operations carried out in Equation
(24) results in a system of nonlinear element differential equations. Assem-

!] 5ling the element matrices for the particular mechanism being solved results in
the global svstem of equations:

M Quer * C Qe * (Ke + Ky) Q = F(t) (25)

The M, C, K and K, matrices are all functions of time. The C matrix results
from the kinetic energy of the system. No damping was included in the formula-
tion of the problem. The C Q,t term was found to be small and thus was ignored
in the analysis. The matrix Ky is the linear portion of the total stiffness
matrix. It is a function of rigid body motion, but is not a function of the
deformations Q. The matrix K,, however, is the nonlinear portion of the stiff-
ness matrix. It is a function of the deformations §. Equation (25) is thus a
nonlinear system of differential equations.

The derivation of the finite element Equation (25) is based on the assump-

tion of positive strains €. If the strain is negative a similar derivation is
possible, based on Equation (15) for the strain energy rather than Equation
“14). The only difference in the resulting Equation (25) is in the stiffness

matrix. Wherever an 27l occurs i{n the original formulation, it becomes (-g)®~
for negative strains. All other negative signs resulting from the introduction
af -« cancels out tn the differentiationa required. Thus in order to handle both
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positive and negative strains the terms involving <@l in the stiffness matrix
were replaced by ‘¢ ®°L.

In order to solve the nonlinear svstem of Equation (25), an iterative ap-
proach was used. First the equations were solved using the linear terms onlv,
i.e. the K, matrix was ignored. This was accomplished bv setting all of the
tracing constants Dy, Dy and Dy equal to zero. The solution Q for the linear
equations was then used to determine values for %he nonlinear stiffness matrix
Kq- Egquation (25) was then solved again for new values of Q, and the process re-
peated. Experience showed that this procedure converged in from 3 to 5 i1tera-
tions. To solve Equation (25) for Q(c), for particular K,, a harmonic series
solution method was used similar to that of Bahgat and Willmert [l4). This ap-
proach overcomes problems with stability, due to the time varying nature of the
matrices, that sometimes result from an eigenvalue technique. The steadv state
solution is obtained without adding artificial damping. The solution, without
the C Q.t term, is given by:

N

Qe) = s (K - a< .21 (&) cos nut + By sin nut) 126)
where o is the input crank speed, and Rn and én are solutions to the linear equa-
tions:

N N-1

- -

o An cos nut + By sin nwty, k= 0, 1,...,2N-1 (27)

Flry) = ‘
k n n*o
where éo is set equal to zero. The values of ty are the times at N equal time

increments per revolution of the input crank given by:

t = %E for k = 0,1,...,2N-1 (28)
Computational experience indicates that a fairly accurate solution is obtained
using only a few terms in Equation (26). As the number of terms increases the
components of the matrix (K - n? ,2M) grow and thus the inverse (K - nl ,2M)"1
becomes small. The summation can therefore be truncated to reduce computational
time.

The stress in the links is calculated by evaluating the strains frowm Equa-
tion (12). The stress can then be determined at any point in an element using
Equations (6) and (7). To find the maximum stress in an element the wmaximum
strain must be found. Setting the first derivative of Equation (12) to zero and
solving the resulting expression, the position of the maximum strain is deter-
mined. Once the location is known, the maximum strain and stress can be evalu-
ated.

The above formulation is based on the use of the shear angle a, which is ap-
propriate particularly for short members. For long slender links this quantity
is not required. The elimination of a reduces the size of the problem consider-
ably since the nodal deformations a), .1, A}, 32, v and 1 would no longer be
present. For long slender members:

ATt W, (29)

Using this expression, the equation for strain energy (l4) for positive shear ¢
reduces to:

h
2,48 y w, 2
S.E. = [, ) b{%A(u,x*%Ds w2 -
50 (1 + Dy w,2)3/2
vy W,
B T L. S SV (30)
aley U,y 7 Ds ¥ix x dy

(1 + 0y w, 22372

A similar expression exists for negative strain. The kinetic energy also changes
if x is not present. The energy associated with transverse shear, Eguation (&),
is eliminated and thus Equation (3) represents the total kinetic energy of the
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element. Using a procedure simtlar to the method outlined above, vibrational
equations of the same form as Equation (25) can be obtained, but they will be
smaller {n size. However, nonlinear terms still exist fn the stiffness matrix
due to the material and geometric nonlinearities. The method of solution is thus
tdentical to that outlined earlier.

EXAMPLE PROBLEMS

The following example i{s presented to illuatrate the method of solution.

The nonlinearities due to neutral axis stretching, and complex curvature-dis-
placement and stress-strain relationships are all considered. A four-bar link-
age, as shown in Figure 2, is used as the example with all of the members flexi-
ble and made of the same material. The data for the mechanism is: Length of
input c¢rank (AB) = 5.0 in, Length of coupler (BC) = 11.0 in, Length of rocker
(CD) = 10.5 in, Fixed distance (AD) = 10.0 in, Cross section of links a rec-
tangular, Height of rectangle = 1.0 in, and Width of rectangle = 0.25 in. The
position of the input crank is zero degrees at t = 0 and the direction of rota-
tion is counterclockwise. The mechaniam is divided into three elements with each
link in the mechaniam taken as an element. The boundary conditions are that only
moment and shear terms exiet for the input crank's driven end (A). For the pin
connectione between links, there are deformations, rotations and shear terms, and
for the rocker's fixed point there are only rotation and shear terms.

First, the deformations in the mechanism were determined with the shear
angle 2 present. In this case the crank link was rotated at 100 rad/sec. The
material properties, agproximating aluminum, were as follows: A = 10.87x106
15/in2, B = 0.8387x10!1 1b/in2, m = 3.0, and Mass density = 0.0002536
lb-sec?/in®. Three separate procedures were used to obtain numerical results.
First the problem wag solved using the linear analysis method of Bahgat and
Willmert {14], with E = A. Next the method of this paper was used with the trac-
ing constants equal to zero. Thus & linear analysis was obtained. Finally the
method was applied with all tracing constants equal to one, i.e. a full nonlinear
analysis. A representative deformation ﬁl as a function of crank poeition is
shown in Figure 3. This is the horizontal deformation of the free end of the
crank link. As can be seen, cthe three curves are very similar. The effect of
the shear angle a is to increage the deformation slightly. For this slow speed
the linear and nonlinear analyses were almost identical.

The same problem was solved again at a higher speed of 200 rad/sec. The re-
sulting deformation Gl is shown in Figure 4. As can be seen, high frequency
oscillations started to appear, with greater separation between the three analy-
ses. At even higher speed these oscillations became more predominant to the
point of instabilities in the motion at very high speeds.

The revised form of the analysis equations was considered next, {.e. the
form without the snear angle a. Here a crank speed of 150 rad/sec was used. A
comparison was made of the effects of the various nonlinearities on the deforma-
tions and stresses as compared to the linear analysis. Figures 5 and 6 show a
comparison of the linear and nonlinear deformations U, (the horizontal deforma-
tion of the free end of the output link) caused separately by geometric and
material nonlinearities. Figurea 7 and 8 show the maximum stresses in the con-
necting link of the mechanism. As expected, the material nonlinearity of the
Ramberg-Osgood type results in deformations which are greater in magnitude than
those obtained using a linear elastic model. The maximum stress decreased due to
the presence of the term Be® substracted from the linear stress expression.

The geometric nonlinearities considered, namely curvature displacement and
stretching of the neutral axis, both due to large deformations produced mixed
results with deformations reduced at some points and increased at other points.
The effect of the geometric nonlinearities would be expected to produce a stiff-
ening of the members [28] of the mechanism and thus produce smaller deformations.
The increased deformations in this case might be due to the fact that the deform-
ations are in relationship to the entire mechanism and not just to an individual
beam element.

CONCLUSIONS

The nonlinear analysis procedure, using a finite element technique, is an
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effective method of calculating the steady state deformations and stresses in a
mechanism. Significant differences can occur between the linear and nonlinear
approaches. This was particularly true for the stresses in the example consid-
ered in this work. Research is etill needed on the overall effect of the shear
angle a, and a more complete picture of the nonlinear terms in the analysis would
be of value. Additional nonlinear effect should also be investigated, such as
the effect on the translations of one link due to large deformations Of the other
links.
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Presented in this paper 1s a new optimization techmque, called the Gauss nonlinearly constrained
techmque. which s applicable to design problems with nonlinear objective functions and constraints. The
technigue 15 an extension of a previously developed method for linear constraints, referred to as the
Gauss constrained technique  Both of these techniques. based on the Gauss unconstrained method. have
S0 been developed so that the Kuhn-Tucker conditions are automatically satished when the procedure
® terminates.

1. Introduction

The optimal design of many structures and mechanical mechanisms involves one or more
- complex and time-consuming analyses at each iteration of the optimization. This is particularly
L critical if a large-deformation nonlinear analysis is required. In these cases especially. it is
S important that the optimization method requires very few analyses, even at the expense of
- significantly increasing the amount of calculations by the optimization technique itself. For
example. in a recent work, DeRubes and Willmert {1] applied the relatively efficient generalized
reduced gradient (GRG) technique of Lasdon et al. [2] to mechanism design for path
- generation and rigid-body guidance. The mechanism links were considered flexible. and thus a
- guasi-static (linear) finite element analysis was used to obtain deformations and stresses. The
GRG required as many as 14,000 mechanism analyses to obtain the optimal design. Comput-
ation time approached twenty hours on an IBM 4341 mainframe computer. If a nonlinear
analysis had been used. the corresponding times would have been considerably higher.

. To reduce the number of analyses. Paradis and Willmert [3] developed a new direct method
SR for efficient design of mechanisms. Gauss' method. which Wilde {4] concluded to be very
- efficient for unconstrained mechanism design. was modified to handle linear constraints. The
e resulting technique, referred to as the Gauss constrained technique, was highly etficient and
required very few objective function evaluations to obtain an optimal design. Their method has

e -

»

D

O]
5% Y r_v'*,-

-. -.'

Ahe

been extended. in this paper. to handle nonlinear constraints.
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2. Development of the method
The optimization problem consists of minimizing:

Fixy=¢'¢. (1)
where ¢ 1y a vector of general functions of the variables x. Many opumal design problems have
’5 objective functions of this form. For the derivation of the optimization techmique. the ¢ are
- approximated by linear tunctions of x (which makes F quadratic) of the form:

e=Jx~+c,. (2)

where J and ¢ are a constant matrix and vector, respectively. However. the technique. once

- derived. will be aplied to more general cases. where the ¢ are highly nonlinear functions of x.
The constraints are approximated by a general quadratic ot the form:

glx)=ixdx~bx-d =0, 1=1..... k. (3)

The gradient of the objective tunction (1) 1s given by

VFEx)=2J¢ . (4
X which 1s exact. whether ¢ is linear or not. as long as J is the matrix of first partial denvatives of
. ¢. The matnix of second partial denvatives of the objective function is

G=2JJ". (5)

which 15 exact only when ¢ 15 hinear. At any given iteration we assume there are [ active
Al

constraints (ordered such thaty = 1. 2. . . /). where ! = k. Thus. the Kuhn-Tucker conditions

)

VFioy - (A x~=b A - - ~(Ax~b)aA =0 (6)
- glx)=:xAx~bx-d =0 y=1.... .1, ()
" Az00 =100, [ (X)
Stmilar to the development of Paradis and Willmert [3]. the new method is generated such
that a singlé iteration vields the optimal de<ign for a quadratic objective tunction. assuming that
the constraints active at the optmal design are also active at the starting point. It F(x) 18
Juadratic. then the tollowing cquation v valid for any two points x - and x -
VFix v VFx ) - Ghx x ) (Y1
|
Solving oy tor TFx ) assumimye o0 s the optimal design. and substituting into ¢9) results mn
1
[
"..-”../\"- o -'.--’ ‘o /:"-".» '.'n"' 4-/- o - ,.. . e » et e,
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the iterative expression (after solving for x .. ):
x"I::{G-o-SA-‘ ,\) {(;X‘“S b/\ _VF‘(IA) . (“”

[f the objective function has the special form ot (1). then the matnx ¢ in the ierative equation
would be replaced by (5).1.e. G = 2JJ' Otherwise. the method could still be applied as long as
the matrix of second partial derivatives G. or an approximation to it. were known.

[n order to use the iterative equation (10). the unknown vector of Lagrange multiphers A
must be determined. This is accomplished by substituting the expression for x_ . (10}, into
cach of the active constraints of (7) resulting in a system of [ nonlinear equations in [ unknowns
A of the form:

N ’ '
A= HlG=X aa) [le - baA —VF(X‘)J}A;

R

iG-S

A A‘) [Gx‘ ~S b A —VF(x‘)H

i =k

. -1 N
~b:(G+E A [Gxu —S bA, ~VF(x,)

=1

-d =0, 1=1.....1
(11)

This system of equations in A could be solved using several different methods. The approach
used in this research was as follows. At each iteration, initially the Newton-Raphson technique
was applied. If the method did not converge, which may be caused by the fact that the equations
had no solution or that the method simply was not able to locate one, then another approach
was used. In this case. an objective function H was formed which was the sum ot the squares of
the active constraints g,. This unconstrained function was minimized with respect to A. In this
work Powell's method was used. but any available technique could be applied. The optimal
values of A (whether H is zero or not for these values of A) were then used in the iterative
equation (16).

As in the onginal Gauss constrained technique (as well as the gradient projection method),
the criterion for dropping a constraint from the set of active constraints is the sign of A, At any
iteration the constraint corresponding to the most negative A is dropped from the set of active
constraints and a new vector of Langrange multipliers is determined. This procedure is repeated
until all A_ = 0. If this results in no active constraints. then the optimization technique continues
by setting all A, =0 in (10). In this case. the iterative expression can be shown to reduce to
Gauss” method for unconstrained optimization:

x, .. =x —(J]") Ue. (12)
Atceach iteration a decision must be made as to whether or not a new constraint should be added
to the set of active constraints. If the direction of mimimization s, .18 detined as the direction
trom x tox .. thena constraint is added only if a stepin the s, direction will not satisty the
constraint

La_ 2 2 2 0 Tt
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wo different methods were used 1o handle violated constramts. The tfirst approach was to do
nothing special it a constramnt became violated as a result ot an iteration based on (10). Thus.
whether a constramnt s only active. te ¢ = 0 orviolated. e g -0 ts treated the same in the
opumization technigue. The basis behind this approach wus the assumption that eventually the
method will satisty all constramnts. since these are equations (11 which the method attempts to
sdtisty at each iteration. This approach allows the optimization to start at any design whether it
satisties the constramnts or not.

I'he other method of handhing violated constraints was to start at a point which satishied ull
constramnts. Thenoaf g step s taken using (10) such that ¢ (x ) -0, 2 new design x/ . way
tound along the hne connecting x and x . such that ¢.ox” ) =0, This was accomplished by
stepping back from a siolated constramnt using the approximate equation

txr . —x ) lx )
X . -x - ——— (13)
: T S S
The design v . was then used 1in the next iteration.

Although the techmigue was Jdeveloped assuming hnear tunctions ¢(x). 1.e. Flx) quadratic.
the method is applicable to problems where the ¢ are general tunctions of x. An especially
important charactenistic tor mechanism design is that the technigue requires a total of only one
more objective function evaluation than iterations to obtain an optimal design . unlike the GRG
technique of Lasdon et al. [2]. where a step-length determination 1s required at each iteration.

3. Example problems

Several examples were considered in this work. two ot which are presented here.
The first problem. which i1s a modified Rosen-Suzuki test problem. consists of a quadratic
objective function in eight variables with seven quadratic inequality constraints as follows:

Min Flx)y=x = fxi+ fvl=3x; =20l - i - - i
SRR SRR SUER S SR SUE S S v,
N T TR & “2x) - lxte L= 2v, 4y S - l0=0,
g(x)=\‘*r*tf*t:+x'r;*t~x_~l X
i G W (G SRR SR T
VD I SR S WS S U R S SRS S ST WU SUN CUN R
clr) v - Ivo- 3y 4y« Sy - \ v ! v Sen
ARG ¢ T S LA I B
gt T T T e T L T L S T
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NP ST SR S R SR R SEESIUR IR N

=2v - 2v. - 2v, - a2 2. - 2x - =0
caxn =4 I 2 S S e R S R T e L U

[ables T and 2 <how the results of the opumization trom two different starting points. Three
Jditferent techrmigques were apphied. The first two were variations of the Gauss nonhinearly

Iable |

Rosutts ot Rosen -Nazuke test problem
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constrained method. The first one. labeled GNLC.NS in the tables. ignored violated con-
straints. while the second. labeled GNLC. treated violated constraints using ( 13). Both of these
methods were compared with the generalized reduced gradient technigue. labeled GRG.

Table 1 shows the results from a starting point, where no constraints were active or violated
All three methods produced the same optuimal design. The number of iterations NI and number
ot funcuon evaluations NF tor the GNLC methods were considerably less than for the GRG.
Table 2 shows the results from a starting point in which three constraints were violated. while
one was active, For this starting point only the GNLC.NS technique was applicable. Again. the
number of iterations and function evaluations were less than for the GRG.

The second example consists of the design of a four-bar mechanism such that the coupler
point t XX. YY) of the mechamsm closely generated the curve defined by the eight points as
shown in Fig. 1. The objective tunction to be minmimized is the sum of the distances (squared)
between the desired curve and the actual curve generated by the mechanism:

Fixp=2 (AX_ -XG ) =(YY —-YG) |
where ‘

XX =v,cosy —xocond =y, . YY =x.smny ~x.cosd ~x, .

VA N e Tl

"

vosinty — o)
£ = tan [ - .
X~ x,co8(y - x,.)

Xt xi - xl - x, - 2. cos(y, —x,)
Cos
3

no= N e
2y - vl - 2xoxacos(y, - ox,)]
204
10 4
0
" « . N L, T A R Ny LSy P N \‘-"- . b\“'\ﬂ .
-, d - R I - SUN L » 1N » A « " e
Sl T e A AR O A A e
o) " o - - * - - » -
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and (XG. YG) are the coordinates of the desired curve.

T'he Jdesign vanables x.. ... x| are ink lengths. orientation of some of the links as well as
the focation ot the crank pin. Note. the objective function is a highly nonlinear function of the
Jesign vanables. This v the same problem that Paradis and Willmert [3] solved. however, two
nonlinear constraimnts. g, and ¢.,. have been introduced here to constrain the location of the
crank pn to two user-defined circular regions. Thus. our design problem contains ten variables,

v -v.. and fourteen mequality constraints g(x) s 0. (=1, . 14. The constraints are:
glx)=1-v.s0, gAx)=1-x,=0,
g Ax) = x. -y, =0, gy =, —x =<1,
golx) =x. -, =0 gAxy=x, ~x,—x, —x, =1,
gAXY = .-, 0 =) glxry=x,+x,—x, —x,;=0,
2lx) = x =0 gulx)=x,—-30=<0,
¢olx) =, - =0 g{x)y=x,.—-30=0,
¢ {x)=1(x, - CX, ) - (X, - Y, ) gulx)=(x,, - CX:): +(xq — CY:)2
- R =0, - R:=0,
/‘m .
- //’r N -
+ " T E
S~ |
i PN /
- ' \\_/
\ ! rrEmATE
+ fut
N ;
| X\ | 3
I \\\ I
i ‘ "
| N
N
| i
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Table 3 I
Results of mechamsm design problem
Starting
point GNLC GRG
Status NI t 6
feasible NF 2 RIS
15.0 Y 30.0 300
S0 R 8.348 X345
15.0 X, R R A
5.0 X, 12817 12.817
15.0 X, 16.026 16.026
-0.007 X! -1.063 -1.063
.412 X 1259 [ 239
1.379 X! LIS 111N
6.0 X, 4.0 10
50 R 7.0 Rl
220.29 F 1 7R349 1.7R348
— Gy 91314 9.13.14

‘Angle vanables (radians)

where CX . CY,. R,. CX.. CY.. and R. were 4, 4. 3. 7. 7. and 3. respectively.

The resulting optimal designs using the GNLC and GRG methods are shown in Table 3. The
optimal mechanism is shown in Fig. 2. Again the Gauss nonlinearly constrained method
required significantly fewer objective function evaluations.

4. Conclusions

The Gauss nonlinearly constrained method is an effective technique of solving nonlinear
design problems. It is particularly efficient for cases in which the evaluation of the objective
function is very time-consuming. Although in some instances considerable calculations must be
done per iteration, the amount required is still insignificant compared to that required to do just
one analysis of a complex mechanical or structural system.

The method has been applied to a variety of problems consisting of objective functions of
vartous complexities. In all cases it has worked well. However. it has received only limited
application to problems involving constraints that are more than quadratically nonlinear. It
appears that further research is required for such cases.
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. VIBRATION ANALYSIS OF MECHANISMS
. WITH GEOMETRIC AND MATERIAL NONLINEARITIES

Edward Kear [I], M. Sathyamoorthy, and K. D. Willmert
! Department of Mechanical and Industrial Engineering
AN Clarkson University
Potsdam, New York 1Js70b

ABSTRACT

A nonlinear vibrational analysis for planar mechanisms with material and
seometric nonlinearities is presented.  The material nonlinearity ot the ¥

8
= Ramberg-0Osgood tvpe is emploved for the nonlinear stress-strain behavior.

The geometric nonlinearities that are included in this study are due to

-, coupling of displacements, stretching and curvature-displacement. A finite
element analysis, with high order hemite polynomials which ensure compati-
' bility of curvature between elements, is used. The resulting nonlinear dif-
ferential equations are solved by means of a harmonic series technique to
obtain steady state solutions. The effects of the nonlinearities are dis-

cusgsed by means of an example problem.
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Iiffect of Geometric and Material
L Nonlinearities on Vibration of Planar
o Mechanisms®

T Foo B kear 11 M. Sathyamoorthy

K. D Willmert

Departiment of Mechanical and Industreiad Foeineering

e ('larkson University
U Potsdam, New York 13676
i Abstract
T
T:.f ) A nonlinear vibrational analysis for planar mechanisms with ma-
_~. terial and geometric nonhinearities; undergoing known rigid-body mo-
-.:_ tions, 1s presented. Material nonlinearity of the Ramberg-Osgood
b type 1s employed for the nonlinear stress-strain behavior. The geo-
O . metric nonhinearnities, included in this study, are due to stretching and
= curvature. A hmte element analysis, with high order hermite polyno-
= mials, which ensure compatibility of curvature between elements, is

used  The resulting nonlinear differential equations are solved using
an Adams fourth-order predictor-corrector algarithin (LSODIE from
ODEPACK]) to obtain the transient vibrational response about the

- known, time dependent, rigid-body position. The effects of the non-
linearities are discussed by means of an example problem.
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Figure 1: Global Displacements For Element i

d (GKE) 3 OKE . OSE 0. j=1ton (1)

dt \ dq; 9q;  0q; ’

k [d <8KE) OKE OSE}
- - - + =0;7=1ton 2
; [dt 94; dq;  Og; |, ’ @
For Element :

N 32 (3)
KE = 2/0 (4v*(z) + 16%(x)) dz 3)
ht? .
A= bt : [ = — (4)

12




-
-

N

o~
S
Tawe
B~ -

®

T
.

[
el
Lt

v ,l ’A‘

il
: N

.

A
',

~

e

.l'-

PR )
v v fe D e

»
RAM AR

POATET TR T N

“
'

e .'”. Y YU

" i 0
T .‘."‘

a5 ey

~

Lt
2 o
f

—.

AT NI AT AP AF I NN

Ty

- T e rTy—rerey

Figure 2: Deflected Element.

X 1s the X coordinate of end 1 of the reference.

1% 1s the Y coordinate of end 1 of the reference.

o 1s the angle between the reference and .\ axis.

i 1s the axial displacement of a point from its reference position.

w 1s the transverse displacement of a point from its reference position.

715 a unit vector in r direction.

7 1% a unit vector in y direction.
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('1’2 = (il
I 0 7 g
ol ! (32)
0 M 92 F(QvQ)
L 1q (33)
% (M7 {F(q.9)}

LSODE (Livermore Solver for Ordinary Differential Equations) can be used

to solve a svstem of equations of the form

{v} = {F(t.9)} (34)
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f.: - Consider a straight beam element with its clastic axis parallel to the x-axis of the fixed

i zlobal system of coordinate G. Under the action of loads which are distributed along the beam

T . clement, it deforms. This deformation is described by the displacement of each point of the elastic

‘ axis. The components of these displacements u, v and w are in the direction of 8,5, éyG and ézG- re-
V] spectively (see Figure 1), In addition, cach cross section is also rotated by angle 6 about the

elastic axis.

Due to this deformation, the triad €, . éyH and €,y at the point B of the undeformed axis is

( . transtormed into a new rotated orthogonal triad of unite vectors &, 1y, éyD- €,p and the position

vector of the point B, an elastic axis, after deformation becomes

S Rpp =(XG + Qe + (YG + Qleyg + (Zg + Qg
; o +(xp+u)6xH+vt-yH+wé,[_H
[ while the position vcclorTiPD of the point P off the elastic axis after deformation reduces to
: Rp=(Xg+Qéxg + (YG + Qléyg + (Zg + Q)G
' e +(xp+u)éxH+véyH+wﬁzH
‘ +Yp é)‘p+ %0 &,p+rAep
:;j N where A is the warping displacement of the cross scection which is considercd an extension of the
N . classical St. Venant torsion to a more general case.
_?j' a To this point the clastic deformations of the clement are defined for the general case where
! ::: the deformations are due to the action of forces which arc distributed along the beam element. In
P the case of mechanisms, the element is imposed to an additional angles of deformation vy, Yy and v, ,
. :T‘ - due to the elastic deformations of the other clements, in the directions Xy, Yy and zyy. respective-
_:‘.- Iv.
. Finally, the position vector of the point P after deformation with respect to the undeformed
L
- system of coordinates will reduce to
R T AT . T F
- Ry =LX T+ Qup + txy + Uy
o
- - T R
. + 0 T Tryl o
_::' 3 where
- xT = U Xg Y Z
- : LAG YG 4G 3
e J
'.\ ‘
-
i T e L L S U D A L e e
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fe

Qa1 = 1Q; Q34
X = LX[ 001
T = Luvwyj
Xp= Wypspd
T,y 1s the elastic transformation matrix and is given by
TrH = TrD TDH thre
Tpyy is a transformation matrix of the body.
The velocity of the point P after deformation at any instant of time is given by
K - - _ —.T .
Rpp = LXT + QqTgh + (KT + Qu)Tey
+(xT
H
+L(5(T + QAJ)TGH + (XH + {JT)TI‘H + XpTDrTrH}EEH

. r T
+ GT)TrH +U TrH + xp TrH.l .3H

Using finite element expression to rewrite the previous equation and isolating the velocity terms,

the expression can be written in the following form

>

€]

Rp =3 2p e )
%

Also, if the axial deformations in the direction %xH.E ‘H and%zH are transformed to the global fixed

Y

coordinate, the final expression for the velocity reduces to

=i

Rp=L3x 3,3 4

Ol

O -

a) Kinetic Energy

If we consider the previous beam element with an additional two concentrated masses (m

conl’
M ,p2) atnodes 1 and nod2 respectively, then the Kinetic energy of the clement becomes:
E . 'I‘ .
s ol = -
l\h:l/2 Rp de\«'ol+1/2mcoan1 R]
ST
" +12meany Ra R

where pois the mass density of the element. m no are the concentrated masses of the nodes 1

conl, Mco

° *
and 2, respectively and Ry R are the velocitics of the nodes 1 and 2.



The kineuc cnergy of the clem

K =12XT Q)M

b) Strain Energy

The strain energy of the
m+1

m+1 L xx

SE imn Eey )" -
T 122G ey + gy ldvol

Lagrangian Expression is given by
L =KE - SE.

¢) Examples:

1) Rotating cantilever beam (sce Figures 2-7)
Length = 20.0 in
radius = 0.2 in

= 10.87E6 lb/in*
p=2536 -1 1bs/in
operating speeds

o = 100. rad/s, 300 rad/s, 500 rad/s

Deformation using the formula given by "Stephen.’

0} 100

up 6.3799 E-4
VL 1.3914E-4
wi -1.3905E-4

2y Four-Bar Linkage (see Figures 8-21)
Height of the beam = 1.0 in
Width of the beam =().25 in
E = 10.87 E6 Ib/in?

B = 8 387 E10 Ib/in>

et et et et et e m ".4'.."..{ o l’ I (An‘-n‘-\ ‘-[.A’.Jt.q(-n‘ C

ent can be rearranged in the following form

nt including material nonlinearity is

Sl 2l Sl Al 8 Y A a2 A" it (e S eyt W'T'TT

300 500 rad/s
S.7419E-3 1.5949E-2
2523E-3 34787E-3
-1.2513E-3 -3.47648E-3
{
% "-aih




o m =3

“‘,. .

-

RP'Y '\A".‘.'-.‘ ‘-\.“. B

TR N S

[« p = 2.536E~4 b sec~/in*

working speed w = 100 rad/s, 150 rad/s.
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Figure 1 Position Vector of point P on the Deformed Element.
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